
Groovy Objects Users Guide
Groovy Domain Object Support for Naked Objects 4.0.x

Version 0.1-SNAPSHOT

Copyright © 2009 Dan Haywood

Permission is granted to make and distribute verbatim copies of this manual provided
that the copyright notice and this permission notice are preserved on all copies.

iii

Preface .. v
1. Introduction .. 1
2. Configuring your (Maven) Project .. 3

2.1. Structure of a Naked Objects Application .. 3

2.2. Updating the Main Project .. 4

2.3. Updating the DOM Project ... 5

2.4. Updating the Fixture and Service Projects ... 8

2.5. Updating the Commandline and/or Webapp Project .. 8

3. Writing Domains Object in Groovy .. 9
3.1. (Optional) Superclass ... 10

3.2. Properties and Collections .. 10

3.3. Title & Icon ... 11

3.4. Creating and Persisting Objects ... 11

3.5. Callbacks ... 11

3.6. Annotations .. 12

3.7. Supporting Methods ... 13

4. Writing Fixtures in Groovy .. 15

v

Preface
Groovy Objects is a sister project to Naked Objects, allowing domain objects to be written in the Groovy

dynamic language as well as in Java.

Groovy Objects is hosted on SourceForge, and is licensed under Apache Software License v2. Naked

Objects is also hosted on SourceForge, and is also licensed under Apache Software License v2.

http://groovyobjects.sourceforge.net
http://nakedobjects.org
http://groovy.codehaus.org
http://groovyobjects.sourceforge.net
http://www.apache.org/licenses/LICENSE-2.0.html
http://sourceforge.net/projects/nakedobjects
http://www.apache.org/licenses/LICENSE-2.0.html

1

Chapter 1

Introduction

This chapter explains what Groovy Objects is for, and a little about how it works.

The Naked Objects framework enables design-driven applications to be rapidly developed and optionally

deployed, automatically providing a runtime-generated OOUI for the domain objects. Naked Objects is

written in Java, and normally the domain objects that make up the application are also written in Java.

These objects are basically pojos; Naked Objects provides a number of annotations and defines a number

of coding conventions so that business rules and constraints can be picked up by the framework, and to

expose behaviour in the UI over-and-above simple CRUD operations.

Naked Objects performs its magic by building a metamodel of the underlying domain objects, and uses this

to build the OOUI. The process is very similar to the way that ORMs such as Hibernate work, but rather

than reflecting the domain objects into the persistence layer, it reflects them into the presentation layer.

Groovy (as I'm sure you know) is an alternative language for writing code to run on the JVM. It offers

a number of dynamic language features, as well reduced syntax clutter (eg for properties) along with

programming constructs such as closures.

What Groovy Objects provides is the ability to write domain objects in Groovy and then run on top within

Naked Objects. Because Groovy source files are ultimately compiled down into Java bytecode, Naked

Objects is able (with a little bit of tweaking) to build up its metamodel and run as normal. What Groovy

Objects does is perform the tweaking in how the metamodel is built up.

This user guide explains how to configure your project to develop using Groovy, and provides some

guidance on how to follow the Naked Objects coding conventions while programming in Groovy. We

generally recommend you develop your domain applications using Apache Maven, and Groovy Objects

itself is packaged as a Maven module. The details provided focus solely on how to update a Maven-based

project; we also explain how to configure your application within an IDE.

http://nakedobjects.org
http://hibernate.org
http://groovy.codehaus.org
http://maven.apache.org

3

Chapter 2

Configuring your (Maven) Project

Groovy Objects is provided as a Maven module. In this chapter we explain the configurations steps

necessary to update your Maven-based domain application, and how to configure a common IDE so you

can program in Groovy with Naked Objects.

2.1. Structure of a Naked Objects Application

The typical structure for a Naked Objects Maven-based application (and the one you'll end up with if you

use Naked Objects' Maven application archetype) is:

• app

Main (parent) module, whose pom.xml references the submodules

• app/dom

Domain object model, plus interfaces for services, repositories and factories

• app/service

Implementation of services, repositories and factories

• app/fixture

Fixtures, used to seed (in-memory) object store when running in exploration/prototype mode

• app/commandline

Bootstrap for running from the command line (typically, the DnD viewer or HTML viewer)

• app/webapp

Packaging and running as a web application

The application is normally run either from the commandline project, using the

org.nakedobjects.runtime.NakedObjects main class (where the viewer to use is specified using

Configuring your (Maven) Project Updating the Main Project

4

the --viewer flag), or from the webapp project (picking up web.xml for bootstrapping as a web

application),

2.2. Updating the Main Project

There is no Groovy code in the main project, but what we do here is to define the version, and where

necessary configuration, of dependencies used by the application's submodules. We have classpath

dependencies and build dependencies, so both are defined.

There are three things to specify:

• which version of the Groovy runtime to use

• which version of GMaven to use. GMaven is the Groovy maven plugin that we use to compile Groovy,

hosted at codehaus.org. By default GMaven specifies a version of the Groovy runtime to compile

against, but this can be overridden

• which version of Groovy Objects to use. Groovy Objects is not itself written in Groovy, but it does

have a dependency on Groovy runtime. We want this to be in sync.

To start with, we specify the versions of these different components, by adding the following to the

pom.xml:

<properties>

 <groovy.version>1.7.2</groovy.version>

 <gmaven.version>1.2</gmaven.version>

 <gmaven.runtime>1.7</gmaven.runtime>

 <groovyobjects.version>0.1-SNAPSHOT</groovyobjects.version>

</properties>

The gmaven.runtime must be compatible with the groovy.version. Typically, if the

groovy.version is x.y.z, then the gmaven.runtime will be simply x.y. The documentation on

GMaven providers for further details; running mvn groovy:providers is a good place to start.

Note: Groovy Objects also has a dependency on the Groovy runtime, albeit in a very

minor way. This dependency is marked optional in order to allow your application to

specify its own Groovy runtime version which if needed can be different from that needed

by Groovy Objects.

Next, we define how we to compile Groovy code, using the GMaven plugin. We specify the plugin, the

version, and its configuration; this goes in <build>/<pluginManagement>:

<build>

 <pluginManagement>

 <plugins>

 ...

 <plugin>

 <groupId>org.codehaus.gmaven</groupId>

 <artifactId>gmaven-plugin</artifactId>

 <version>${gmaven.version}</version>

 <executions>

 <execution>

 <goals>

 <goal>compile</goal>

http://docs.codehaus.org/display/GMAVEN/Home
http://docs.codehaus.org/display/GMAVEN/Groovy+Runtime

Configuring your (Maven) Project Updating the DOM Project

Groovy Objects Users Guide (0.1-
SNAPSHOT) 5

 <goal>testCompile</goal>

 </goals>

 </execution>

 </executions>

 <configuration>

 <providerSelection>${gmaven.runtime}</providerSelection>

 </configuration>

 </plugin>

 </plugins>

 </pluginManagement>

</build>

Finally, we define the dependencies to Groovy Objects and to Groovy. This goes in

<dependencyManagement>/<dependencies>:

<dependencyManagement>

 <dependencies>

 ...

 <!-- Groovy Objects -->

 <dependency>

 <groupId>org.starobjects.groovy</groupId>

 <artifactId>gapplib</artifactId>

 <version>${groovyobjects.version}</version>

 </dependency>

 <dependency>

 <groupId>org.starobjects.groovy</groupId>

 <artifactId>gmetamodel</artifactId>

 <version>${groovyobjects.version}</version>

 </dependency>

 <!-- Groovy -->

 <dependency>

 <groupId>org.codehaus.groovy</groupId>

 <artifactId>groovy-all</artifactId>

 <version>${groovy.version}</version>

 </dependency>

 </dependencies>

</dependencyManagement>

2.3. Updating the DOM Project

The dom project is the place where the bulk of your domain objects live. Since these are now written in

Groovy, we need to ensure that they are compiled.

Source folders

First off, we must separate our Groovy code from any Java code. To do this, create the following folders:

• src/main/groovy

• src/test/groovy

It's important to create both of these folders (even if you aren't planning on writing any unit tests ;-) ...

the IDE integration that we describe below insists upon it.

Configuring your (Maven) Project Updating the Maven POMs

6

Updating the Maven POMs

First, we update the POM our domain objects are compiled using the Groovy compiler. Add the following

into <build>:

<build>

 <plugins>

 <plugin>

 <groupId>org.codehaus.gmaven</groupId>

 <artifactId>gmaven-plugin</artifactId>

 </plugin>

 </plugins>

</build>

Next, we add dependencies both to Groovy Objects' own applib and to Groovy itself:

<dependencies>

 ...

 <dependency>

 <groupId>org.starobjects.groovy</groupId>

 <artifactId>gapplib</artifactId>

 </dependency>

 <dependency>

 <groupId>org.codehaus.groovy</groupId>

 <artifactId>groovy-all</artifactId>

 </dependency>

</dependencies>

The Groovy Objects applib brings in a transitive dependency to the Naked Objects applib along one or

two helper classes (of which more in Chapter 4, Writing Fixtures in Groovy). In the future the applib may

be expanded to include other helper classes or new annotations provided by Groovy Objects itself.

Finally, a small workaround. Naked Objects picks up icons for domain classes from the classpath, with the

Java compiler doing the job of copying these icons from src/main/resources into target. The Groovy

compiler does not seem to do this. We therefore ensure that the Java compiler runs by adding a small

dummy Java class. It could go anywhere, but the images package is probably the best location:

package images;

/**

 * workaround to force Java compiler to kick in and copy images over to target classpath

 */

class Dummy {}

At this point you should be able to build your project from the Maven command line. Let's see how to

add in IDE support.

Configuring Eclipse IDE

If you are using Eclipse IDE, then you can add in Groovy support using the GroovyEclipse plugin.

To start off with, install the plugin into your IDE using the standard Eclipse update mechanisms. There's

a detailed walkthrough on the Groovy wiki if you need it.

http://groovy.codehaus.org/Eclipse+Plugin
http://docs.codehaus.org/display/GROOVY/Install+Groovy-Eclipse+Plugin

Configuring your (Maven) Project Other IDEs

Groovy Objects Users Guide (0.1-
SNAPSHOT) 7

Next, enable the Groovy nature in your dom project:

Doing this brings in Groovy editor and compiler support (technically: the Groovy nature is added to the

project). But it also adds in a reference to the Groovy runtime to our classpath, which we don't need

because we already have courtesy of Maven. Therefore, remove the Groovy Libraries classpath library:

And that should do the trick.

Other IDEs

If you use another IDE, please let us know what the steps are to configure it, and we'll update this

documentation.

Configuring your (Maven) Project Updating the Fixture and Service Projects

8

2.4. Updating the Fixture and Service Projects

As well as using Groovy for the dom project, you may well want to use it for the fixture project and the

service implementations project. In which case, just follow the same steps as the described for the dom

project.

2.5. Updating the Commandline and/or Webapp Project

Finally, we need to update the commandline and/or webapp project (depending on how you intend to

bootstrap your application). First, we add a dependency to Groovy Objects' gmetamodel module, in

<dependencies>:

<dependencies>

 ...

 <dependency>

 <groupId>org.starobjects.groovy</groupId>

 <artifactId>gmetamodel</artifactId>

 </dependency>

 ...

</dependencies>

Then, update the nakedobjects.properties config file as follows:

nakedobjects.reflector.facets.include=org.starobjects.groovy.gmetamodel.RemoveGroovyMethodsFacetFactory

This little piece of magic alters the way that Naked Objects builds up its metamodel of the domain objects.

Specifically what it does is to filter out the various methods that the Groovy compiler adds behind the

scenes.

In most circumstances that should be enough. If you have very deep hierarchies of domain classes, then

you may also need to add in:

starobjects.groovy.depth=NNN

where NNN should be the depth of the class hierarchy. The default is 5, so in many cases there won't be

any need to add this key. (The reason this is needed is that the Groovy compiler seems to generate a set

of methods for each level of the class hierarchy).

And you should be good to go.

9

Chapter 3

Writing Domains Object in Groovy

Naked Objects uses convention over configuration and annotations to build the metamodel of the domain

objects. This chapter explains what those conventions look like, and where annotations should be applied,

when developing domain objects in Groovy.

Naked Objects allows validation and other business constraints to expressed either declaratively (using

annotations) and/or imperatively (using supporting methods). For a given class member (property,

collection or action) we can specify whether the member:

1. is visible, and if so, is it

2. is usable, and if modified, whether the proposed change

3. is valid

Or, slightly more pithily, can you see it, can you use it, can you do it.

Any public methods that don't represent properties or collections are interpreted as being actions. These

are surfaced in the UI (as menu items or buttons) to provide arbitrary business behaviour (this is what

makes Naked Objects applications more than a simple CRUD framework).

There are also a number of reserved method names that are used either as rendering hints or to define

lifecycle callbacks.

Collectively these conventions and annotations define the Naked Objects Programming Model. This

chapter should give you a good flavour of what it's like to writing applications for this programming

model; but refer to the Naked Objects documentation for the complete reference.

The code fragments that follow are taken from the Groovy Objects' own test application (see the Groovy

Objects subversion repository).

http://www.nakedobjects.org
https://groovyobjects.svn.sourceforge.net/svnroot/groovyobjects/trunk/testapp/claims

Writing Domains Object in Groovy (Optional) Superclass

10

3.1. (Optional) Superclass

Typically domain objects subclass from AbstractDomainObject (in the Naked Objects applib,

transitively referenced from Groovy Objects' own applib); for example:

class Claim extends AbstractDomainObject {

 ...

}

It isn't mandatory to subclass from AbstractDomainObject. All that Naked Objects requires is that

it can inject its DomainObjectContainer into the domain object to support lazy loading and dirty

tracking (the resolve() and objectChanged() methods, normally called by CgLib proxies). The

DomainObjectContainer also allows your domain object to be able to instantiate and persist new

instances (using the newTransientInstance() and persist() methods).

In practical terms, then, if you aren't able or don't want to subclass from AbstractDomainObject, just

make sure you push down the above methods into your own objects (probably by way of a project-specific

superclass).

3.2. Properties and Collections

Naked Objects follows the usual JavaBean conventions for properties, and so any Groovy property is

picked up automatically by Naked Objects. This also works for collections (a JavaBean property that

returns a java.util.Collection, java.util.List or java.util.Set).

For example, the Claim object is rendered like this:

The corresponding Groovy source code is:

class Claim extends AbstractDomainObject {

 boolean rush

 String description

 Date date

 String status

 Claimant claimant

 Approver approver

 List<ClaimItem> items = new ArrayList<ClaimItem>()

 ...

}

Writing Domains Object in Groovy Title & Icon

Groovy Objects Users Guide (0.1-
SNAPSHOT) 11

3.3. Title & Icon

Naked Objects uses the title() method to render a label for domain objects. For the Claim class, this

is defined as:

class Claim extends AbstractDomainObject {

 ...

 String title() { status + " - " + date }

 ...

}

It's important that this is defined as returning a java.lang.String; a simple Groovy def is not sufficient.

In addition, you may want to define an iconName(). If present, this is used to locate the icon for the

entity (meaning that different instances of the same type can render different icons). Otherwise, Naked

Objects infers the icon from the class name. The icon is typically picked up from an images package (in

src/main/resources).

3.4. Creating and Persisting Objects

Naked Objects will automatically inject any domain services into your domain objects, but to do this must

know about then when they are instantiated. But it also requires to know about them so that it can track their

persistence state. To do this, use the DomainObjectContainer#newTransientInstance(Class)

method. Note that this also requires that your domain object has a public no-arg constructor.

Similarly, if you want to persist a domain object, use DomainObjectContainer#persist().

If inheriting from AbstractDomainObject, then there are helper methods that delegate to the container

for you.

3.5. Callbacks

There are a number of callback methods that Naked Objects will call on your domain object if present. One

of these is created(), called after a transient instance is just instantiated. It's a good place to perform

initialization logic (that would otherwise probably have lived in a constructor). For example:

class Claim extends AbstractDomainObject {

 ...

 void created() {

 status = "New"

 date = new Date()

 }

 ...

}

Note that the method must return void (Groovy's def returns a java.lang.Object, which is not what

Naked Objects is looking for).

Writing Domains Object in Groovy Annotations

12

Other callback methods include:

• loading() and loaded()

• persisting() and persisted() (or saving() and saved() if you prefer)

• updating() and updated()

• removing() and removed() (or deleting() and deleted() if you prefer)

3.6. Annotations

Declarative business rules amount to applying annotations on the appropriate methods. But you should

note that Naked Objects does not (currently) support annotations on fields, so it's necessary to put the

annotation on the getter for the property.

For example, to indicate that a property is disabled (read-only), we can write:

class Claim ... {

 String status

 ...

 @Disabled

 String getStatus() { status }

}

Other annotations are used as hints for the user interface. For example the @MemberOrder is used to

specify the order in which properties and collections appear in the UI:

class Claim ... {

 String status

 ...

 @MemberOrder("3")

 String getStatus() { status }

}

Another annotation is @Named, which commonly appears on action parameters if using built-in value

types. For example, the Claim's addItem() action looks like:

class Claim ... {

 void addItem(

 @Named("Days since") int days,

 @Named("Amount") double amount,

 @Named("Description") String description) {

 ClaimItem claimItem = newTransientInstance(ClaimItem.class)

 Date date = new Date()

 date = date.add(0, 0, days)

 claimItem.dateIncurred = date

 claimItem.description = description

 claimItem.amount = new Money(amount, "USD")

 persist(claimItem)

 addToItems(claimItem)

 }

 ...

}

The full list of annotations can be found in the Naked Objects applib, and are of course documented in

the Naked Objects documentation.

Writing Domains Object in Groovy Supporting Methods

Groovy Objects Users Guide (0.1-
SNAPSHOT) 13

3.7. Supporting Methods

Business rules can also be specified imperatively, using supporting methods. These methods are associated

back to the class member (property, collection or action) using a simple prefix. For example, to

imperatively disable the addItem() action for a Claim, we could use:

class Claim ... {

 void addItem(

 @Named("Days since") int days,

 @Named("Amount") double amount,

 @Named("Description") String description) {

 ...

 }

 String disableAddItem() {

 status == "Submitted" ? "Already submitted" : null

 }

 ...

}

Returning a non-null value means the action (or more generally class member) should be disabled; the

string returned is the reason why the action cannot be invoked.

There are supporting methods for each of the three levels of business rules ("see it, use it, do it"), with the

prefix being hideXxx(), disableXxx() and validateXxx(). The hideXxx() returns a boolean,

the other two (as you've just seen) return a String. In the case of validateXxx(), the method takes

arguments to allow validation to be performed, for example:

class Claim ... {

 ...

 String validateAddItem(int days, double amount, String description) {

 if (days <= 0) "Days must be positive value"

 }

 ...

}

There are a couple of other supporting methods that can be provided. The defaultXxx() prefix is used

to provide a default either for a property of a newly instantiated object, or, more commonly, as the default

for a parameter of an action. In the latter case the argument number is specified:

class Claim ... {

 ...

 int default0AddItem() { 1 }

 ...

}

In a similar vein, the choicesXxx() prefix provides a list of choices for a property or for an action

parameter:

class Claim ... {

 ...

 List<String> choices2AddItem() { ["meal", "taxi", "plane", "train"] }

 ...

}

There's no requirement for choicesXxx() to tie in with validateXxx() or defaultXxx(), but they

usually are consistent with each other.

15

Chapter 4

Writing Fixtures in Groovy

We can take advantage of one of Groovy's features to reduce the boilerplate when writing fixtures. This

chapter explains how.

One of the classes provided by the Groovy runtime is ObjectGraphBuilder, which (as per its

documentation) is "a builder for an arbitrary graph of beans that follow the JavaBean convention,... useful

for creating test data for example". Which is, indeed, exactly what we need to do when we create fixtures

for use with the in-memory object store.

The Groovy Objects applib extends this class by providing the DomainObjectBuilder, which

additionally ensures that domain objects are instantiated through the DomainObjectContainer. The

original ObjectGraphBuilder also needs to be told explicitly where the domain object packages are,

so DomainObjectBuilder makes this easy to do in a typesafe way.

Let's see it in action. Here's the fixture from the Groovy Objects testapp, to create 3 Employees, some

Claims and some ClaimItems within those Claims:

class ClaimsFixture extends AbstractFixture {

 @Override

 public void install() {

 def builder = new DomainObjectBuilder(getContainer(), Employee.class, Claim.class)

 builder.employee(id: 'fred', name:"Fred Smith")

 builder.employee(id: "tom", name: "Tom Brown") {

 approver(refId: 'fred')

 }

 builder.employee(name: "Sam Jones") {

 approver(refId: 'fred')

 }

 builder.claim(id: 'tom:1', date: days(-16), description: "Meeting with client") {

 claimant(refId: 'tom')

 claimItem(dateIncurred: days(-16), amount: money(38.50), description: "Lunch with

 client")

http://groovy.codehaus.org/ObjectGraphBuilder

Writing Fixtures in Groovy

16

 claimItem(dateIncurred: days(-16), amount: money(16.50), description: "Euston -

 Mayfair (return)")

 }

 builder.claim(id: 'tom:2', date: days(-18), description: "Meeting in city office") {

 claimant(refId: 'tom')

 claimItem(dateIncurred: days(-18), amount: money(18.00), description: "Car

 parking")

 claimItem(dateIncurred: days(-18), amount: money(26.50), description: "Reading -

 London (return)")

 }

 builder.claim(id: 'fred:1', date: days(-14), description: "Meeting at clients") {

 claimant(refId: 'fred')

 claimItem(dateIncurred: days(-14), amount: money(18.00), description: "Car

 parking")

 claimItem(dateIncurred: days(-14), amount: money(26.50), description: "Reading -

 London (return)")

 }

 }

 private Date days(int days) {

 Date date = new Date();

 date = date.add(0,0, days);

 return date

 }

 private Money money(double amount) {

 return new Money(amount, "USD");

 }

}

The builder is instantiated by passing in the DomainObjectContainer, as well as one representative

class from each package that holds entities to be built. In this case the Employee.class takes care of

the employee package (for just Employee itself), while Claim.class represents the claims package (for

both Claim and ClaimItem).

The DSL for building the object graph is just that defined by Groovy's ObjectGraphBuilder. To my

eyes at least, this is easier to follow than its Java equivalent.

There is one limitation to be aware of, though, which relates to how the Claim/ClaimItem parent/child

is wired up. It's important for the collection name in the parent (Claim) to match that of the class name of

the child (ClaimItem), and the back reference in the child (if there is one) to match the class name of the

parent. For the test app, this means that the collection in Claim is called claimItems. If this is irksome,

then the ObjectGraphBuilder does define the ability to tweak its behaviour as to how the relationship

name is inferred. (A future enhancement to Groovy Objects might be to solve this problem in the general

case, by perform the wiring using the Naked Objects metamodel).

	Groovy Objects Users Guide
	Table of Contents
	Preface
	Chapter 1. Introduction
	Chapter 2. Configuring your (Maven) Project
	2.1. Structure of a Naked Objects Application
	2.2. Updating the Main Project
	2.3. Updating the DOM Project
	Source folders
	Updating the Maven POMs
	Configuring Eclipse IDE
	Other IDEs

	2.4. Updating the Fixture and Service Projects
	2.5. Updating the Commandline and/or Webapp Project

	Chapter 3. Writing Domains Object in Groovy
	3.1. (Optional) Superclass
	3.2. Properties and Collections
	3.3. Title & Icon
	3.4. Creating and Persisting Objects
	3.5. Callbacks
	3.6. Annotations
	3.7. Supporting Methods

	Chapter 4. Writing Fixtures in Groovy

