Groovy Objects Users Guide

Groovy Domain Object Support for Naked Objects 4.0.x
Version 0.1-SNAPSHOT

Copyright © 2009 Dan Haywood

Permission is granted to make and distribute verbatim copies of this manual provided
that the copyright notice and this permission notice are preserved on all copies.

=10 < T \%

I 1 1 o [Tox o o PRSP PRPPRPRR 1
2. Configuring your (Maven) ProjeCtoooviiiiiiiiiiiiceceeeeeeeeeeeeeeeeeee ettt r e e e e e e 3
2.1. Structure of a Naked Objects APPIICALIONcccooeeiieiieeccc e 3
2.2. Updating the Main ProjECEuveiiiiiiie ettt 4
2.3. Updating the DOM PrOJECEccoiuiiiiiiiiiiee ettt e e 5
2.4. Updating the Fixture and ServiCe PrOjECEScooiiiiiiiiiiiiiee et 8
2.5. Updating the Commandline and/or Webapp Projectcooeeeiiiiiiiieiiiiee e 8
3. Writing Domains ObJECt IN GFOOVYuuuuuuuuuurunnrnininrnsunnnnnnnnsnnnennnnnnnsnnnnnnnnnnannnnnnn————————————— 9
3.1, (OptionNal) SUPEICIASSuuuuuuuueuuiuuuniiuiuiunuiiurrnrrrrrrrrrr——. 10
3.2. Properties and COIECHIONSooiiiiiiiiiiiie e 10
000 T I = oo o PSS PPERPR 11
3.4. Creating and Persisting ODJECESc.vviiiiiiiiiie s 11
O O 11 7= o PSPPSR 11
36, ANNOLBLIONSeeeieiiieie ettt et e et e et e e e e s s bt e e e e bbb e e e s s st e e e e e anbbe e e e snteeeesanneeeas 12
3.7. SUPPOrtiNg MENOAScoooviiieeeeeeeeeeee e 13
4. WIiting FIXTUMES 1N GIOOVY ...eveiiiiiiiieeiiiieie ettt ettt ait et e e et e s e e e e e nnne e e e e snneeeeaas 15

Preface

Groovy Objectsisasister project to Naked Objects, allowing domain objectsto be written in the Groovy
dynamic language as well asin Java.

Groovy Objects is hosted on SourceForge, and is licensed under Apache Software License v2. Naked
Objectsis aso hosted on SourceForge, and is also licensed under Apache Software License v2.

http://groovyobjects.sourceforge.net
http://nakedobjects.org
http://groovy.codehaus.org
http://groovyobjects.sourceforge.net
http://www.apache.org/licenses/LICENSE-2.0.html
http://sourceforge.net/projects/nakedobjects
http://www.apache.org/licenses/LICENSE-2.0.html

Chapter 1
Introduction

This chapter explains what Groovy Objectsisfor, and a little about how it works.

The Naked Objects framework enabl es design-driven applications to be rapidly devel oped and optionally
deployed, automatically providing a runtime-generated OOUI for the domain objects. Naked Objectsis
written in Java, and normally the domain objects that make up the application are also written in Java.
These objects are basically pojos; Naked Objects provides a number of annotations and defines a number
of coding conventions so that business rules and constraints can be picked up by the framework, and to
expose behaviour in the Ul over-and-above simple CRUD operations.

Naked Objects performsitsmagic by building ametamaodel of the underlying domain objects, and usesthis
to build the OOUI. The processis very similar to the way that ORMs such as Hibernate work, but rather
than reflecting the domain objects into the persistence layer, it reflects them into the presentation layer.

Groovy (as I'm sure you know) is an alternative language for writing code to run on the VM. It offers
a number of dynamic language features, as well reduced syntax clutter (eg for properties) aong with
programming constructs such as closures.

What Groovy Objects providesisthe ability to write domain objectsin Groovy and then run on top within
Naked Objects. Because Groovy source files are ultimately compiled down into Java bytecode, Naked
Objectsis able (with alittle bit of tweaking) to build up its metamodel and run as normal. What Groovy
Objects does is perform the tweaking in how the metamodel is built up.

This user guide explains how to configure your project to develop using Groovy, and provides some
guidance on how to follow the Naked Objects coding conventions while programming in Groovy. We
generaly recommend you develop your domain applications using Apache Maven, and Groovy Objects
itself is packaged as a Maven module. The details provided focus solely on how to update a Maven-based
project; we a so explain how to configure your application within an IDE.

http://nakedobjects.org
http://hibernate.org
http://groovy.codehaus.org
http://maven.apache.org

Chapter 2
Configuring your (Maven) Project

Groovy Objects is provided as a Maven module. In this chapter we explain the configurations steps
necessary to update your Maven-based domain application, and how to configure a common IDE so you
can program in Groovy with Naked Objects.

2.1. Structure of a Naked Objects Application

Thetypical structure for a Naked Objects Maven-based application (and the one you'll end up with if you
use Naked Objects Maven application archetype) is.

° app

Main (parent) module, whose pom xnl references the submodules

e app/dom

Domain object model, plus interfaces for services, repositories and factories

e app/ service

Implementation of services, repositories and factories

e app/fixture

Fixtures, used to seed (in-memory) object store when running in exploration/prototype mode

e app/ conmandl i ne

Bootstrap for running from the command line (typicaly, the DnD viewer or HTML viewer)

e app/ webapp
Packaging and running as a web application

The application is normaly run ether from the commandliine project, using the
or g. nakedobj ect s. runt i me. NakedObj ect s main class (where the viewer to useis specified using

Configuring your (Maven) Project Updating the Main Project

the - - vi ewer flag), or from the webapp project (picking up web. xnl for bootstrapping as a web
application),

2.2. Updating the Main Project

There is no Groovy code in the mai n project, but what we do here is to define the version, and where
necessary configuration, of dependencies used by the application's submodules. We have classpath
dependencies and build dependencies, so both are defined.

There are three things to specify:
« which version of the Groovy runtime to use

« whichversion of GMaven to use. GMaven isthe Groovy maven plugin that we use to compile Groovy,
hosted at codehaus.org. By default GMaven specifies a version of the Groovy runtime to compile
againgt, but this can be overridden

« which version of Groovy Objects to use. Groovy Objects is not itself written in Groovy, but it does
have a dependency on Groovy runtime. We want thisto bein sync.

To start with, we specify the versions of these different components, by adding the following to the
pom xm :
<properties>

<groovy.version>1. 7. 2</ groovy. ver si on>

<gmaven. ver si on>1. 2</ gmaven. ver si on>

<gmaven.runtinme>1. 7</ gmaven. runti ne>

<gr oovyobj ect s. ver si on>0. 1- SNAPSHOT</ gr oovyobj ect s. ver si on>
</ properties>

The gmaven.runtinme must be compatible with the groovy.version. Typicadly, if the
groovy. version is x.y. z, then the gmaven. runti me will be simply x. y. The documentation on
GMaven providers for further details; running mvn gr oovy: provi der s isagood place to start.

Note: Groovy Objects also has a dependency on the Groovy runtime, abeit in a very
minor way. This dependency is marked optional in order to allow your application to
specify itsown Groovy runtime version which if needed can be different from that needed
by Groovy Objects.

Next, we define how we to compile Groovy code, using the GMaven plugin. We specify the plugin, the
version, and its configuration; thisgoesin <bui | d>/ <pl ugi nManagement >:

<bui | d>
<pl ugi nManagenent >
<pl ugi ns>

<pl ugi n>

<gr oupl d>or g. codehaus. gmaven</ gr oupl d>
<artifact|d>gmaven-pl ugi n</artifact!d>
<ver si on>${ gmaven. ver si on} </ ver si on>
<execut i ons>

<execut i on>

<goal s>
<goal >conpi | e</ goal >

http://docs.codehaus.org/display/GMAVEN/Home
http://docs.codehaus.org/display/GMAVEN/Groovy+Runtime

Configuring your (Maven) Project

Updating the DOM Project

<goal >t est Conpi | e</ goal >
</ goal s>
</ executi on>
</ executi ons>
<confi guration>

<provi der Sel ecti on>${ gmaven. runti ne} </ provi der Sel ecti on>

</ configuration>

</ pl ugi n>
</ pl ugi ns>
</ pl ugi nManagenent >

</ bui | d>

Finally, we define the dependencies to Groovy Objects and to Groovy. This goes in

<dependencyManagemnent >/ <dependenci es>:

<dependencyManagenent >
<dependenci es>

<l-- Goovy bjects -->
<dependency>
<gr oupl d>or g. st ar obj ect s. gr oovy</ gr oupl d>
<artifactld>gapplib</artifactld>
<ver si on>${ gr oovyobj ect s. ver si on} </ ver si on>
</ dependency>

<dependency>
<groupl d>or g. st ar obj ect s. gr oovy</ gr oupl d>
<artifact|d>gnmetanodel </artifactld>
<ver si on>${ gr oovyobj ect s. ver si on} </ ver si on>
</ dependency>

<l-- Goovy -->

<dependency>
<gr oupl d>or g. codehaus. gr oovy</ gr oupl d>
<artifactld>groovy-all</artifactld>
<ver si on>${ gr oovy. ver si on} </ ver si on>

</ dependency>

</ dependenci es>
</ dependencyManagenent >

2.3. Updating the DOM Project

The dom project is the place where the bulk of your domain objects live. Since these are now written in

Groovy, we heed to ensure that they are compiled.

Source folders

First off, we must separate our Groovy code from any Java code. To do this, create the following folders:

e src/ main/ groovy

e src/test/groovy

It's important to create both of these folders (even if you aren't planning on writing any unit tests ;-) ...

the IDE integration that we describe below insists upon it.

Groovy Objects Users Guide (0.1-
SNAPSHOT)

Configuring your (Maven) Project Updating the Maven POMs

Updating the Maven POMs

First, we update the POM our domain objects are compiled using the Groovy compiler. Add thefollowing
into <bui | d>:

<bui | d>
<pl ugi ns>

<pl ugi n>
<gr oupl d>or g. codehaus. gmaven</ gr oupl d>
<artifact!|d>gmaven-pl ugi n</artifact!d>
</ pl ugi n>

</ pl ugi ns>
</ bui | d>

Next, we add dependencies both to Groovy Objects own applib and to Groovy itself:

<dependenci es>

<dependency>
<gr oupl d>or g. st ar obj ect s. gr oovy</ gr oupl d>
<artifactld>gapplib</artifactld>

</ dependency>

<dependency>
<gr oupl d>or g. codehaus. gr oovy</ gr oupl d>
<artifactld>groovy-all</artifactld>

</ dependency>

</ dependenci es>

The Groovy Objects applib brings in a transitive dependency to the Naked Objects applib along one or
two hel per classes (of which morein Chapter 4, Writing Fixturesin Groovy). In the future the applib may
be expanded to include other helper classes or new annotations provided by Groovy Objects itself.

Finally, asmall workaround. Naked Objects picksup iconsfor domain classes from the classpath, with the
Java compiler doing the job of copying theseiconsfrom sr ¢/ mai n/ r esour ces into target. The Groovy
compiler does not seem to do this. We therefore ensure that the Java compiler runs by adding a small
dummy Java class. It could go anywhere, but thei mages package is probably the best location:

package i nages

/**

* workaround to force Java conpiler to kick in and copy inages over to target classpath
*/

class Dumy {}

At this point you should be able to build your project from the Maven command line. Let's see how to
add in IDE support.

Configuring Eclipse IDE
If you are using Eclipse IDE, then you can add in Groovy support using the GroovyEclipse plugin.

To start off with, install the plugin into your IDE using the standard Eclipse update mechanisms. There's
a detailed walkthrough on the Groovy wiki if you need it.

http://groovy.codehaus.org/Eclipse+Plugin
http://docs.codehaus.org/display/GROOVY/Install+Groovy-Eclipse+Plugin

Configuring your (Maven) Project Other IDEs

Next, enable the Groovy nature in your dom project:

b 45 Other Projects
¥ 45 main
> ggapplib [trunk /gmain /gapplib]
»Fodocy New »
Flgomain Go ntg
> =t gmena
viytestaop Open in New Window
"gcaims - Open Type Hierarchy F4
" daims Show In W
I Iz claimg
a8 0P e
b ifdam| = Copy Qualified Name
[Paste ®V
Delete £33
Remove from Context {38l
Build Path >
Source NHS >
Refactor N8BT >
g Import...
3 Export...
4" Refresh F5
Close Project
Close Unrelated Projects
Assign Working Sets...
Run As >
[Debughs > B problems 58
% pebug 53 Prcfile As P | irems
Validate Jescription
H om Maven >
vl <terming Taam »
a1 <t Compare With »
Replace With >
Restore from Local History...
Spring Tools >)
Java EE Tools » Add JavaScript support...

Convert to Plug-in Projects...
| —_— Convert to Aspect] Project

s da Properties A=l Convert to Groovy Project |

Doing this brings in Groovy editor and compiler support (technically: the Groovy nature is added to the
project). But it also adds in a reference to the Groovy runtime to our classpath, which we don't need
because we already have courtesy of Maven. Therefore, remove the Groovy Libraries classpath library:

PR s | Nevoner ” O
EEAEN
¥ 45 Other Projects
v*@ngam

¥ (&% gapplib [trunk/gmain /gapplib]
» 3 gdocumentation (trunk/gmain /gdecumentation]
¥ = gmain [trunk/gmain]
» @gmelamndel [trunk/fgmain/gmetamaodel]
¥ 5 testapp
¥ iz claims [trunk /testapp/claims]
» %claims—mmmandlina [trunk/testapp/claims/command
Vﬁclaims-dom [trunk/testapp/claims/dom]
» [%src.imamhava
I [src/main fresources
P =JRE System Library [JavaSE-1.6]
b Bl Maven Dependendies
I [sre/main fgroovy

[src/test/groovy
| i Groow Lbraries a——
¥ [groovy-all-1.7.2 jar - Show In AW o
P Egsrc . ap
b (=target Copy | ®C
iggpom xml 5 5/21/10 8:17 Copy Qualified Name
> E&claims-ﬁxture [trunk/testapp ::;, Paste Bv
> Hclalms-sewlce [trunk/testapp Delete £33
» %claims—w&happ [trunk ftestap|
Build Path » > Remove from Build Path
21 Import... #z Configure Build Path...
e Export... I
+ Refresh F5
[—— —— —] | Properties AR

And that should do the trick.

Other IDEs

If you use another IDE, please let us know what the steps are to configure it, and we'll update this
documentation.

Groovy Objects Users Guide (0.1-
SNAPSHOT) 7

Configuring your (Maven) Project Updating the Fixture and Service Projects

2.4. Updating the Fixture and Service Projects

Aswell as using Groovy for the dom project, you may well want to use it for the fixture project and the
service implementations project. In which case, just follow the same steps as the described for the dom
project.

2.5. Updating the Commandline and/or Webapp Project

Finally, we need to update the commandline and/or webapp project (depending on how you intend to
bootstrap your application). First, we add a dependency to Groovy Objects gnet anodel module, in
<dependenci es>:

<dependenci es>

<dependency>
<groupl d>or g. st ar obj ect s. gr oovy</ gr oupl d>
<artifact!|d>gnet anodel </artifactld>

</ dependency>

</debéﬁdencies>
Then, update the nakedobj ect s. properti es config file asfollows:

nakedobj ects.refl ector.facets.include=org. starobjects. groovy. gnet anodel . RenobveG oovyMet hodsFacet Fact ory

Thislittle piece of magic altersthe way that Naked Objects builds up its metamodel of the domain objects.
Specifically what it does is to filter out the various methods that the Groovy compiler adds behind the
scenes.

In most circumstances that should be enough. If you have very deep hierarchies of domain classes, then
you may also need to add in:

st arobj ects. groovy. dept h=NN\N

where NNN should be the depth of the class hierarchy. The default is 5, so in many cases there won't be
any need to add this key. (The reason thisis needed is that the Groovy compiler seems to generate a set
of methods for each level of the class hierarchy).

And you should be good to go.

Chapter 3
Writing Domains Object in Groovy

Naked Objects uses convention over configuration and annotationsto build the metamodel of the domain
objects. This chapter explainswhat those conventions |ook like, and wher e annotations should be applied,
when devel oping domain objectsin Groovy.

Naked Objects allows validation and other business constraints to expressed either declaratively (using
annotations) and/or imperatively (using supporting methods). For a given class member (property,
collection or action) we can specify whether the member:

1. isvisible, and if so, isit
2. isusable, and if modified, whether the proposed change

3. isvaid
Or, dlightly more pithily, can you seeit, can you use it, can you do it.

Any public methods that don't represent properties or collections are interpreted as being actions. These
are surfaced in the Ul (as menu items or buttons) to provide arbitrary business behaviour (this is what
makes Naked Objects applications more than a simple CRUD framework).

There are also a number of reserved method names that are used either as rendering hints or to define
lifecycle callbacks.

Collectively these conventions and annotations define the Naked Objects Programming Model. This
chapter should give you a good flavour of what it's like to writing applications for this programming
model; but refer to the Naked Objects documentation for the complete reference.

The code fragments that follow are taken from the Groovy Objects own test application (see the Groovy
Objects subversion repository).

http://www.nakedobjects.org
https://groovyobjects.svn.sourceforge.net/svnroot/groovyobjects/trunk/testapp/claims

Writing Domains Object in Groovy (Optional) Superclass

3.1. (Optional) Superclass

Typically domain objects subclass from Abst ract Donai nObj ect (in the Naked Objects applib,
transitively referenced from Groovy Objects own applib); for example;

class O ai m extends Abstract Domai nQbj ect {

}

It isn't mandatory to subclass from Abst r act Domai nObj ect . All that Naked Objects requires is that
it can inject its Donmai nCbj ect Cont ai ner into the domain object to support lazy loading and dirty
tracking (the resol ve() and obj ect Changed() methods, normally called by CgLib proxies). The
Domai nCbj ect Cont ai ner also alows your domain object to be able to instantiate and persist new
instances (using the newTr ansi ent | nst ance() and per si st () methods).

In practical terms, then, if you aren't able or don't want to subclass from Abst r act Donmai nQoj ect , just
make sure you push down the above methodsinto your own objects (probably by way of aproject-specific
superclass).

3.2. Properties and Collections

Naked Objects follows the usual JavaBean conventions for properties, and so any Groovy property is
picked up automatically by Naked Objects. This also works for collections (a JavaBean property that
returnsaj ava. util. Col | ection,java.util.List orjava.util.Set).

For example, the O ai mobject is rendered like this:

- » Claim {Form]
Mew - 2010-5-7

Description: Meeting at clients

Rush: D
Date: May 7, 2010
Mews

T Fred Smith

[tems: oo hoe Car parking
e Reading - London (return)

The corresponding Groovy source codeis:

class C ai mextends Abstract Domai nCbj ect {

bool ean rush

String description

Dat e date

String status

Cl ai mant cl ai mant

Appr over approver

List<Caimtenr items = new Arraylist<C aimtens()

10

Writing Domains Object in Groovy Title & Icon

3.3. Title & Icon

Naked Objects usesthetit| e() method to render alabel for domain objects. For the C ai mclass, this
is defined as:

class O ai m extends Abstract Domai nCbj ect {

String title() { status + " - " + date }

}

It'simportant that thisis defined as returning ajava.lang.Sring; a simple Groovy def is not sufficient.

In addition, you may want to define an i conNane() . If present, this is used to locate the icon for the
entity (meaning that different instances of the same type can render different icons). Otherwise, Naked
Objects infers the icon from the class name. The icon is typically picked up from an images package (in
src/ mai n/ resour ces).

3.4. Creating and Persisting Objects

Naked Objectswill automatically inject any domain servicesinto your domain objects, but to do this must
know about then when they areinstantiated. But it also requiresto know about them so that it can track their
persistence state. To do this, use the Donmai nCbj ect Cont ai ner #newTr ansi ent | nst ance(C ass)
method. Note that this also requires that your domain object hasapubl i ¢ ho-arg constructor.

Similarly, if you want to persist a domain object, use Donai nObj ect Cont ai ner #per si st ().

If inheriting from Abst r act Domai nQbj ect , then there are hel per methods that del egate to the container
for you.

3.5. Callbacks

Thereareanumber of callback methodsthat Naked Objectswill call onyour domain object if present. One
of theseiscreat ed(), caled after atransient instance is just instantiated. It's a good place to perform
initialization logic (that would otherwise probably have lived in a constructor). For example:

class O ai mextends Abstract Domai nObj ect {

voi d created() {
status = "New'
date = new Date()
}

}

Note that the method must return voi d (Groovy'sdef returnsaj ava. | ang. Qoj ect , which is not what
Naked Objectsis looking for).

Groovy Objects Users Guide (0.1-
SNAPSHOT) 11

Writing Domains Object in Groovy Annotations

Other callback methods include:

* | oadi ng() and| oaded()

» persisting() andpersisted() (orsaving() andsaved() if you prefer)
e updating() andupdat ed()

e renmovi ng() andrenoved() (or del eting() anddel et ed() if you prefer)

3.6. Annotations

Declarative business rules amount to applying annotations on the appropriate methods. But you should
note that Naked Objects does not (currently) support annotations on fields, so it's necessary to put the
annotation on the getter for the property.

For example, to indicate that a property is disabled (read-only), we can write:

class daim... {
String status

@i sabl ed
String getStatus() { status }

}

Other annotations are used as hints for the user interface. For example the @vkenber Or der is used to
specify the order in which properties and collections appear in the Ul:

class daim... {
String status

@Eenber O der ("3")
String getStatus() { status }

}

Another annotation is @Named, which commonly appears on action parameters if using built-in value
types. For example, the d ai nisaddl! t en() action looks like:

class daim... {

voi d addltem(
@Nanmed(" Days since") int days,
@Nanmed(" Amount ") doubl e anount,
@\aned("Description") String description) {
Claimtemclaimtem= newlransi entlnstance(C ai mtem cl ass)
Date date = new Date()
date = date.add(0, O, days)
claimtemdatel ncurred = date
claimtemdescription = description
clai mMtem amunt = new Mney(anount, "USD")
persist(claimtem
addTol tens(cl ai mten)

}

The full list of annotations can be found in the Naked Objects applib, and are of course documented in
the Naked Objects documentation.

12

Writing Domains Object in Groovy Supporting Methods

3.7. Supporting Methods

Businessrulescan also be specified imperatively, using supporting methods. These methods are associated
back to the class member (property, collection or action) using a simple prefix. For example, to
imperatively disable the addl t en() action for ad ai m we could use:

class daim... {

voi d addlten
@Named(" Days since") int days,
@\aned(" Amount ") doubl e anount,
@\amed(" Description") String description) {

}
String disabl eAddlten() {

status == "Submtted" ? "Already submtted" : null

}
}

Returning a non-null value means the action (or more generally class member) should be disabled; the
string returned is the reason why the action cannot be invoked.

There are supporting methods for each of the three levels of businessrules ("seeit, useit, doit"), with the
prefix being hi deXxx(), di sabl exxx() and val i dat exxx() . The hi deXxx() returns abool ean,
the other two (as you've just seen) return a St ri ng. In the case of val i dat eXxx() , the method takes
argumentsto allow validation to be performed, for example:

class daim... {

String validateAddl ten(int days, double anmount, String description) {
if (days <= 0) "Days nust be positive val ue"
}
}

There are a couple of other supporting methods that can be provided. The def aul t Xxx() prefix isused
to provide adefault either for aproperty of anewly instantiated object, or, more commonly, asthe default
for a parameter of an action. In the latter case the argument number is specified:

class daim... {

int defaul tOAddlten() { 1}
}

In a similar vein, the choi cesXxx() prefix provides a list of choices for a property or for an action
parameter:

class daim... {

Li st<String> choi ces2Additenm() { ["meal", "taxi", "plane", "train"] }

}

There's no requirement for choi cesXxx() totieinwith val i dat exxx() or def aul t Xxx() , but they
usually are consistent with each other.

Groovy Objects Users Guide (0.1-
SNAPSHOT) 13

Chapter 4
Writing Fixtures in Groovy

We can take advantage of one of Groowvy's features to reduce the boilerplate when writing fixtures. This
chapter explains how.

One of the classes provided by the Groovy runtime is Chj ect G aphBui | der, which (as per its
documentation) is"abuilder for an arbitrary graph of beansthat follow the JavaBean convention,... useful
for creating test datafor example". Which is, indeed, exactly what we need to do when we create fixtures
for use with the in-memory object store.

The Groovy Objects applib extends this class by providing the Domai nCbj ect Bui | der, which
additionally ensures that domain objects are instantiated through the Domai nChj ect Cont ai ner. The
original Cbj ect Gr aphBui | der also needs to be told explicitly where the domain object packages are,
so Domai nObj ect Bui | der makes this easy to do in atypesafe way.

Let's seeit in action. Here's the fixture from the Groovy Objects testapp, to create 3 Enpl oyees, some
d ai nsand some d ai n t ens within those d ai ns:

class O ainsFi xture extends AbstractFixture {

@verride
public void install() {
def builder = new Donmi nObj ect Bui | der (get Cont ai ner (), Enpl oyee.class, C aimclass)

bui | der. enpl oyee(id: 'fred', name:"Fred Smith")
bui | der. enpl oyee(id: "tont, name: "Tom Brown") {
approver(refld: 'fred")
}
bui | der. enpl oyee(nane: "Sam Jones") {
approver(refld: 'fred")
}

builder.clain(id: "tom1', date: days(-16), description: "Meeting with client") {
claimant(refld: 'tonl)
claimten(datelncurred: days(-16), ampunt: noney(38.50), description: "Lunch with
client")

15

http://groovy.codehaus.org/ObjectGraphBuilder

Writing Fixtures in Groovy

claimtenm datelncurred: days(-16), anount: noney(16.50), description: "Euston -
Mayfair (return)")
}
builder.clain(id: 'tom?2', date: days(-18), description: “"Meeting in city office") {
claimant (refld: '"tom)
claimten(datelncurred: days(-18), anount: noney(18.00), description: "Car
par ki ng")
claimten(datelncurred: days(-18), anpunt: noney(26.50), description: "Reading -
London (return)")
}
builder.clain(id: 'fred:1", date: days(-14), description: "Meeting at clients") {
claimant (refld: 'fred")
claimtem datelncurred: days(-14), anount: noney(18.00), description: "Car
par ki ng")
claimten(datelncurred: days(-14), anount: noney(26.50), description: "Reading -
London (return)")

}
}

private Date days(int days) {
Date date = new Date();
date = date.add(0,0, days);
return date

}

private Mney noney(doubl e anmount) {
return new Money(anmount, "USD");
}
}

The builder is instantiated by passing in the Domai nQbj ect Cont ai ner, as well as one representative
class from each package that holds entities to be built. In this case the Enpl oyee. cl ass takes care of
the employee package (for just Enpl oyee itself), whiled ai m cl ass representsthe claims package (for
bothd ai mand d ai ml t em).

The DSL for building the object graph is just that defined by Groovy's Obj ect Gr aphBui | der . To my
eyes at |east, thisis easier to follow than its Java equivalent.

Thereis one limitation to be aware of, though, which relates to how the G ai i ai m t emparent/child
iswired up. It'simportant for the collection namein the parent (O ai m) to match that of the class name of
the child (Cl ai n t en), and the back referencein the child (if thereis one) to match the class name of the
parent. For the test app, this means that the collectionin d ai miscalled cl ai nl t ens. If thisisirksome,
then the Qbj ect Gr aphBui | der does define the ability to tweak its behaviour as to how the relationship
nameisinferred. (A future enhancement to Groovy Objects might be to solve this problem in the general
case, by perform the wiring using the Naked Objects metamodel).

16

	Groovy Objects Users Guide
	Table of Contents
	Preface
	Chapter 1. Introduction
	Chapter 2. Configuring your (Maven) Project
	2.1. Structure of a Naked Objects Application
	2.2. Updating the Main Project
	2.3. Updating the DOM Project
	Source folders
	Updating the Maven POMs
	Configuring Eclipse IDE
	Other IDEs

	2.4. Updating the Fixture and Service Projects
	2.5. Updating the Commandline and/or Webapp Project

	Chapter 3. Writing Domains Object in Groovy
	3.1. (Optional) Superclass
	3.2. Properties and Collections
	3.3. Title & Icon
	3.4. Creating and Persisting Objects
	3.5. Callbacks
	3.6. Annotations
	3.7. Supporting Methods

	Chapter 4. Writing Fixtures in Groovy

